An improved FCMBP fuzzy clustering method based on evolutionary programming

نویسندگان

  • Qing Tan
  • Qing He
  • Weizhong Zhao
  • Zhongzhi Shi
  • E. Stanley Lee
چکیده

In current PC computing environment, the fuzzy clustering method based on perturbation (FCMBP) is failed when dealing with similar matrices whose orders are higher than tens. The reason is that the traversal process adopted in FCMBP is exponential complexity. This paper treated the process of finding fuzzy equivalent matrices with smallest error from an optimization point of view and proposed an improved FCMBP fuzzy clustering method based on evolutionary programming. The method seeks the optimal fuzzy equivalent matrix which is nearest to the given fuzzy similar matrix by evolving a population of candidate solutions over a number of generations. A new population is formed from an existing population through the use of a mutation operator. Better solutions survive into next generation and finally the globally optimal fuzzy equivalent matrix could be obtained or approximately obtained. Comparedwith FCMBP, the improvedmethod has the following advantages: (1) Traversal searching is avoided by introducing an evolutionary programming based optimization technique. (2) For low-order matrices, the method has much better efficiency in finding the globally optimal fuzzy equivalent matrix. (3) Matrices with hundreds of orders could be managed. The method could quickly get a more accurate solution than that obtained by the transitive closure method and higher precision requirement could be achieved by further iterations. And themethod is adaptable for matrices of higher order. (4) The method is robust and not sensitive to parameters. © 2011 Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proposing a Novel Cost Sensitive Imbalanced Classification Method based on Hybrid of New Fuzzy Cost Assigning Approaches, Fuzzy Clustering and Evolutionary Algorithms

In this paper, a new hybrid methodology is introduced to design a cost-sensitive fuzzy rule-based classification system. A novel cost metric is proposed based on the combination of three different concepts: Entropy, Gini index and DKM criterion. In order to calculate the effective cost of patterns, a hybrid of fuzzy c-means clustering and particle swarm optimization algorithm is utilized. This ...

متن کامل

Evolutionary User Clustering Based on Time-Aware Interest Changes in the Recommender System

The plenty of data on the Internet has created problems for users and has caused confusion in finding the proper information. Also, users' tastes and preferences change over time. Recommender systems can help users find useful information. Due to changing interests, systems must be able to evolve. In order to solve this problem, users are clustered that determine the most desirable users, it pa...

متن کامل

A Genetic Fuzzy System Based On Improved Fuzzy Functions

Fuzzy inference systems based on fuzzy rule bases (FRBs) have been successfully used to model real problems. Some of the limitations exhibited by these traditional fuzzy inference systems are that there is an abundance of fuzzy operations and operators that an expert should identify. In this paper we present an alternate learning and reasoning schema, which use fuzzy functions instead of if...t...

متن کامل

Evolutionary Clustering Algorithm with Knowledge-Based Evaluation for Fuzzy Cluster Analysis of Gene Expression Profiles

Clustering method, which groups thousands of genes by their similarities of expression levels, has been used for identifying unknown functions of genes. Fuzzy clustering method that is one category of clustering assigns one sample to multiple groups according to their membership degrees. It is more appropriate than hard clustering algorithms for analyzing gene expression profiles since single g...

متن کامل

Fuzzy Evolutionary Programming for Image Processing

The method of evolutionary programming is used to search for the optimal solution in fuzzy clustering of images and in fuzzy boundary detection. In fuzzy evolutionary clustering, the Gibb's probability distribution is employed to model the evolution of object clusters, and the total fuzzy distance is used as a measurement of fitness. In image boundary detection, both geometrical shape and arbit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computers & Mathematics with Applications

دوره 61  شماره 

صفحات  -

تاریخ انتشار 2011